Wearable sensing technology is an essential link in personalized medicine, where researchers must track multiple analytes inside the body simultaneously, to obtain a complete picture of human health. In a new report on Science Advances, Yingli Wang and a team of scientists in biosystems, engineering and information science at the University of Cambridge and Zhejiang University in the U.K. and China, presented a wearable plasmonic-electronic sensor with "universal" molecular recognition capability. The team introduced flexible plasmonic metasurfaces with surface-enhanced Raman scattering (SERS) activity as the fundamental sensing component. The system contained a flexible sweat extraction process to noninvasively extract and fingerprint analytes inside the body based on their unique Raman scattering spectra. As proof of concept, they successfully monitored varying trace-drug amounts inside the body to obtain an individual drug metabolic profile. The sensor bridged the gap in wearable sensing technology to provide a universal, sensitive molecular tracking process to assess human health.
source https://phys.org/news/2021-02-wearable-plasmonic-metasurface-sensor-universal-molecular.html